
1

ICT286
Web and Mobile Computing

Topic 9
Designing Single Page
Applications with Ajax

2

Objectives
• Understand the problems of traditional web application, and

the benefits of single page applications (SPA)
• Understand the requirements of a SPA and be able to design

simple SPAs.

• Understand how Ajax is used to implement Single Page
Applications

• Be able to handle Ajax plain text response.
• Be able to handle Ajax XML response returned from the

server.
• Understand and be able to implement simple client server

application using Ajax and PHP.
• Understand the JSON notation;

3

Sebesta: Ch 10.

Readings

Traditional Web Applications
– Frequent Page Loading

• A traditional web application often consists of
multiple pages. Moving between pages requires
loading and reloading of the same and/or
different pages
– Result in low responsive applications due to time

taken to load a new page and to render it
– The user cannot interact with the application while it is

loading a page – bad user experience
– The user loses focus and flow as the result of

switching between different pages
– Excessive page reloading places unnecessary burden

on the network 4

Traditional Web Applications
– Retrieving Server Results

• In a traditional web application, most page re-
loadings are caused by retrieving server results
– Usually only small changes are needed on the

existing page in order to incorporate the new results,
eg, showing the total price

– Nevertheless, a new page is loaded, and the entire
existing page is replaced by the new page which is
often very similar to the existing page

– This is a great waste of resources (eg, human waiting
time, processor time on both the client and server,
and network bandwidth), resulting in irresponsive web
application, and bad user experience. 5

Traditional Web Applications
– Heavy Server Processing

• A traditional web application relies heavily on the
server to provide most of processing
– This includes many operations that could be

performed on the client side, eg, generating HTML
code using the results of the database query.

– This places unnecessary burden on the server which
needs to serve many clients.

– This is another reason why a traditional web
application is not as responsive as a desktop
application.

6

Traditional Web Applications
– Not Good for Offline Use

• As a traditional web application consists of many
pages (either static or dynamic), all pages are
not loaded at the beginning.
– This is not major issue if the client runs on a desktop

with a constant and reliable network connection (apart
from slowness and high latency). The application only
loads a new page when it is required.

– But it becomes a problem if the client runs on a
mobile device, because the mobile device often move
in and out of service area. When the device is out of
service area, the application cannot load a required
page – the application stops functioning! 7

Single Page Applications
• Due to the problems experienced with the traditional

web applications, a new way of designing web
applications has come into vogue:
Single Page Applications or SPA

– The idea is that web applications should be as responsive
as desktop applications

– And they should be good for online use as well as for
offline use. When the device is out of service area, the
web application should continue to function by relying on
the cached copy of code on the client device.

– The application still retains some of the familiar behaviours
of a traditional web application such as navigation and
bookmarking. 8

Single Page Applications
• As the name implies, most SPA consists of a single

HTML page that is loaded at the beginning and
never need to be reloaded (unless for update).
– Transition between different “pages” in the application

actually corresponds to switching between different
“views” implemented in the same HTML page

– No reloading of a new page is required
– No parsing of a new page is needed as the page has

already been parsed, and its DOM is in the memory.
– At any time, only one view is displayed, other views are

hidden away from the user. Rendering of a new “view”
takes very little time.

– The user may continue to work on the application when
the network connection is lost. 9

Single Page Applications
• Like a traditional web application, an SPA also

needs to communicate with its server to obtain its
service, such as to retrieve the details of a
product, or to calculate the total price.
– However in cases like this, only the data, rather than a

new HTML page, are sent to the client.
– The data sent to the client by the server are small in

size compared to a new HTML page incorporating
those data.

– Once the client receives the data, some small areas of
the existing page may be revised by manipulating the
DOM, eg, a new price figure replacing the old price
figure.

10

Single Page Applications
• More importantly, when an SPA requests data from

the server, the operation is performed
asynchronously
– The user can continue to work on the web application

while data are being retrieved on the background, the
user experiences no pause in the application.

– This is in sharp contrast with the traditional web
application – the user is forced to wait until the new page
is retrieved from the server, and is parsed, and rendered
in the web browser. The application is effectively frozen
before the new page is rendered on the screen. There is
nothing the user can do on the application before the
new page is displayed!

11

Single Page Applications
• For small to medium sized applications, an SPA

typically consists of a single page that provides
multiple views.
– Once loaded, it does not need to be reloaded again.

• For large applications, the SPA may consists of
more than one page.
– Some of the pages may not be loaded initially
– A page is loaded the first time it is needed
– However, the page is only loaded once. Unlike in a

traditional web application, the page will not be loaded
again.

12

Single Page Applications
• Summary of requirements of a SPA:

– It usually consists of a single page (particularly for small
to medium sized applications);

– Each page is only loaded once, and is never reloaded
later;

– The application provides multiple views, akin to multiple
pages in a traditional web application;

– Updating the current page is performed with
asynchronous Ajax requests;

– The application retains the familiar behaviours of a
traditional web application, eg, the user can switch
between different "pages", and can go back to previous
pages, and can bookmark any of the "pages".

13

Single Page Applications
• Now there are excellent support for SPA. Many

JavaScript libraries or frameworks are available that make
SPA design much easier, eg
– jQuery for DOM manipulation
– AngularJS providing a framework for SPA

• In this topic, we will first discuss how to design a
SPA with HTML, CSS and JavaScript through an
example: Example 1

• After that we will focus on client-server data
exchanges using Ajax and PHP
– including using Ajax directly and through jQuery
– we will also cover the use of JSON as the data format for

client-server data exchanges. 14

Example 1: An Simple SPA
• The first requirement of an SPA is to provide

multiple views in a single HTML document
• There are many ways to provide multiple views.

One way is to provide several structured elements
with the same visual outlooks
– one of which is visible
– and all others are hidden, eg,

<article id="page2" hidden="hidden">

<p style="color: red"> This is page 2</p>
<p style="color: red"> This is page 2</p>

</article>

15

Multiple Views
<!DOCTYPE html>
<html>

<head>

<title>A rudimentary SPA</title>

<meta name="viewport" content="width=device-width,
initial-scale=1.0"/>

<link href="css/index.css" rel="stylesheet"/>

<script src="js/jquery-3.3.1.js"></script>

<script src="js/index.js"></script>

</head>

16

Multiple Views
<body>

<header> <h1>Single Page Application</h1> </header>

<div id="main">

<nav>

Page1
Page2

Page3

</nav>

<article id="page1">
<p> This is page 1</p>

</article>

17

Multiple Views
<article id="page2" hidden="hidden">

<p style="color: red"> This is page 2</p>

<p style="color: red"> This is page 2</p>

</article>

<article id="page3" hidden="hidden"">

<p style="color: green"> This is page 3</p>
<p style="color: green"> This is page 3</p>

<p style="color: green"> This is page 3</p>

</article>

</div>

<footer><p>footer</p></footer>
</body>

18

Multiple Views

19

Multiple Views

20

Switching Views
• The second requirement of an SPA is to support

navigation to different views without causing
reloading of the same page.

• One way to do it is to have navigation links pointing
to different "pages". Each of these links represent
one view and it is not a link to an HTML file on the
server.
<nav>

Page1

Page2

Page3

</nav>
21

Switching Views
• When a link is clicked, we need to

– switch to the view represented by the link
– and make sure the click does not cause the browser to

attempt to re-load the url.
• This is achieved by registering an event handler for

the click event on the anchor elements.
var page = ["#page1", "#page2", "#page3"];

var curPage = page[0];
. . .

$('nav a').click(function(e){

e.preventDefault();

var newPage = $(this).attr('href');

window.location.hash=newPage;
}); 22

Switching Views
• In this example, we have three views. They are

represented by three location hash values:
#page1, #page2 and #page3.

• When the user clicks one of the navigation link, the
event handler will do the following:
1) call e.preventDefault() to tell the browser not to

load the url (the default behaviour is to load the url)
2) find out the value of the href attribute of the link which is

one of "page1", "page2" and "page3".
3) change the hash value of the current address

(window.location.hash) – this will trigger the
"hashchange" event if the new hash value is different
from the existing hash value. 23

Switching Views
• The following code registering the event handler for

hashchange event:
$(window).on('hashchange', function(){

var newPage = getPage(window.location.hash);

render(newPage);

});

• When "hashchange" event is triggered, it will
– get the hash value of the current address by calling

getPage(window.location.hash)

– then render the view by hiding the current view and
showing the new view using

render(newPage);
24

Switching Views
• The function getPage(hash) tries to compare the

new hash value with the three hash values in the
array page.

• If the new hash is one of array elements, it will return
the new hash.

• Otherwise it will return #page1 (eg, if the hash is
empty or other strings)
var page = ["#page1", "#page2", "#page3"];

var curPage = pages[0];

function getPage(hash){
var i = page.indexOf(window.location.hash);

if (i<0 && hash!="")window.location.hash=page[0];

return i < 1 ? page[0] : page[i];

}
25

Switching Views
• The function render(newPage) compares the new hash

value with the hash value of the view currently in display.
• If the two are the same, no change to view.
• Otherwise hide the current view and show the new view.

function render(newPage){
if (newPage == curPage) return;

$(curPage).hide();

$(newPage).show();

curPage = newPage;

}

• Note curPage or newPage happens to be a selector for
one of the three article elements, eg, if curPage is
"#page2", then $("#page2") is the jQuery object for the
article element with id="page2". 26

Switching Views
• The full example of this simple SPA is available in

directory Examples/ex1.
• It includes three files:

– ex1/index.html

– ex1/css/index.css

– ex1/js/index.js

• Note, when the application is first loaded, we call
render function to render the view based on the
hash value in the address.

• If there is no hash value in the address, we will
render #page1.

27

28

Ajax
• Ajax stands for Asynchronous JavaScipt and XML.
• Ajax is a client-side technology that is used to retrieve

data from the web server asynchronously.
• Ajax provides Web-based applications with

responsiveness approaching that of desktop applications.
• Ajax is not a new language. It is a new way of writing web

applications using existing protocols and languages:
HTTP, JavaScript, HTML, JSON, XML, DOM and CSS.

• Ajax can be used together with many server-side
technologies such as PHP, servlets and ASP.NET.

• The response from the server can be in the form of plain
text, HTML, XML or JSON notation. Most applications use
JSON for data exchange.

29

History of Ajax
• Possibility began with the iframe element, which

appeared in IE4 and Netscape 4
– An iframe element could be made invisible and could

be used to send asynchronous requests
– In 1999, Microsoft introduced XmlDocument and
XMLHTML ActiveX objects in IE5 for asynchronous
requests

– A similar object is now supported by all current browsers
• Two events ignited widespread interest in Ajax:

– The appearance of Google Maps and Google Mail
around 2004

– Jesse James Garrett named the technology "Ajax" in
2005

30

Main Differences
• Non-Ajax:

– Each client request (as the result of clicking a link or
submitting a form) results in downloading a new page
from the server, replacing the current page with the
new page and rendering the new page by the browser.

• This happens even if only a tiny part of the current page
needs update.

– Slow: because the whole page needs to be retrieved
from the server and the whole page needs be parsed
and rendered.

– Synchronous mode: before the new page is displayed,
there is nothing the user can do on the existing page
except wait!

31

Main Differences
• Ajax:

– if only a small part of the current page requires update
(e.g., the total price of the selected goods), a client
request is made to the server. That request is handled
asynchronously by the browser.

• This means while the request is processed by the server and before the
response arrives, the user can continue to work on the existing page (eg,
filling the form).

– Fast: because only small amount of data relevant to the
update is retrieved from the server and only that small
part of the current page is updated and re-rendered.

– User interaction with the web application is not
interrupted by the data retrieval operation (which can be
slow), giving user a feeling of continuity and
responsiveness.

32

Ajax Basics
• The most important object for writing an Ajax

application is the XMLHttpRequest object.
• You create an XMLHttpRequest object (known

as XHR object) using JavaScript to
– create an HTTP request
– define the callback function that will be called by the

browser to process the response to the request
– send the request to the server
– the browser asynchronously

• receive the response from the server
• and then process the response (update the current page

using the data retrieved from the server) by calling the
registered callback function.

33

XMLHttpRequest
• A number of important properties and methods of
XMLHttpRequest object are listed below. For
full details, see W3C’s working draft published on
30 January 2014.

• Properties:
– readyState

– onreadystatechange

– status

– responseText

• Methods
– open

– send

34

Creating XMLHttpRequest
Object

• The first thing you need to do is create an
XMLHttpRequest object:
var xhr = new XMLHttpRequest();

35

States of an
XMLHttpRequest Object

• An XMLHttpRequest object goes through the
following five states: UNSENT, OPENED,
HEADERS_RECEIVED, LOADING and DONE.

• Each state has a symbolic name and a numeric
value from 0 to 4. For instance, state DONE’s
numeric value is 4.

• You can query the object for its current state
using property xhr.readyState.

36

The Five States of
XMLHttpRequest Obect

• UNSENT (0): the XMLHttpRequest object is
constructed.

• OPENED (1): the open method is successfully
called (hence the HTTP request is created).
During this state, the send method can be
invoked to send the HTTP request.

• HEADERS_RECEIVED (2): response headers are
received from the server.

• LOADING (3): the response body is being
received from the server.

• DONE (4): the complete response is received

37

Creating an HTTP Request
• To create an HTTP request using xhr object:

– You need to state which HTTP method is used: GET or
POST.

– You need to specify the url of the server-side script that
would process the request and generate the response.

– Create the request with open method:
xhr.open(HTTP-method, server-script-url, asyn);

– The third, optional, parameter asyn indicates whether to handle
the request asynchronously (true) or not (false). Default is
true.

• Example:
xhr.open(“GET”, “getCityState?zip=”+zip, true);

38

Sending the HTTP Request
• Send the request using

xhr.send(data);

• The optional argument data is used to send data
to the server. If you use HTTP GET method, the
argument must be null, because the content part
of the request message is empty.
– Example:

xhr.send(null);

• If you use HTTP POST method, you must provide
data (such as user input from an HTML form). The
data forms the content of the request message.

39

Registration of a Callback
• Before sending the request, you must register a

callback function with the XHR object so that when
the response comes back, the browser knows
which function to call (automatically) to process the
response.

• Define and register the callback using
xhr.onreadystatechange = function () {

// callback function body
}

• Whenever xhr.readyState's value changes,
onreadystatechange event is triggerred, and
the above callback will be called automatically.

40

Getting the HTTP Response
• Once the response is received by the web

browser, it can be obtained via the
following properties and methods of the
XHR object:
– xhr.status: status code of the response
– xhr.getResponseHead(header): return

the header value(s) of the matching response
header

– xhr.responseText: the response body

41

Example 2: Loading File
From Server

• Our first Ajax example is to load a file from the
server. The response is in plain text.

• The example is available in directory
Examples/ex2.

42

Example 2: Loading Plain
Text File From Server

<script>
function loadFile(){

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function(){

if (xhr.readyState == 4 && xhr.status == 200) {

document.getElementById("demo").innerHTML
= xhr.responseText;

}

}

xhr.open("GET", "ajax.txt", true);

xhr.send();
}

</script>

43

Example 2: Loading File
From Server

<body>
<div id="demo"></div>

<button onclick="loadFile();">load file </button>

</body>

The file ajax.txt:
<h3> Ajax is fun!</h3>

Note the response this.responseText is in plain
text.

44

Example 2: Loading File
From Server

45

Example 3: Loading XML
File From Server

• Our second Ajax example is to load an XML file
from the server. The response is an XML object.

• The example is available in directory
Examples/ex3.

• Note JavaScript supports XML DOM interface, as
shown in this example.

46

Example 3: Loading XML
File From Server

<script src="https://code.jquery.com/jquery-
3.3.1.min.js"></script>

<script>

function loadXML(){

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function(){

if (this.readyState == 4 && this.status == 200) {

processFruits(this.responseXML);
}

}

xhr.open("GET", "fruits.xml", true);

xhr.send();

}

47

Example 3: Loading XML
File From Server

function processFruits(xml) {
var txt = '<table>';

var fa = xml.getElementsByTagName('fruit');

var i, name, price;

for (i=0; i<fa.length; ++i) {
name=fa[i].getElementsByTagName('name')[0].childNodes

[0].nodeValue;

price=fa[i].getElementsByTagName('price')[0].childNod
es[0].nodeValue;

txt += '<tr><td>'+ name + '</td><td>' + price +
'</td></tr>';

}

txt += '</table>';

$("#demo").html(txt);

}

</script>

48

Example 3: Loading XML
File From Server

<body>
<div id="demo"> </div>

<button onclick="loadXML();">load XML</button>

</body>

the file fruits.xml contains

<fruit-list>

<fruit> <name> apple </name> <price> 5.60 </price>
</fruit>
<fruit> <name> orange</name> <price> 7.20 </price>
</fruit>

</fruit-list>

49

Example 3: Loading XML
File From Server

50

Example 4: Get A Reply
From PHP Script

• Our third Ajax example is a client-server
example. The client sends a name to the server,
which is a PHP script.

• The server will check the name. If the name is
same as my name, it replies "Hello Hong, how
are you?". Otherwise it replies "Who are you?".

• This example is available in directory
Examples/ex4.

51

Example 4: Get A Reply
From PHP Script

<script>
function getGreeting() {

var name=document.getElementById('name').value;

var xhr = new XMLHttpRequest();

xhr.onreadystatechange = function(){

if (this.readyState == 4 && this.status == 200) {
document.getElementById('demo').innerHTML

= this.responseText;

}

}

xhr.open("GET", 'greeting.php?name=' + name, true);
xhr.send();

}

</script>

52

Example 4: Get A Reply
From PHP Script

<body>
Name: <input type="text" id="name"/>

<div id="demo"></div>

<button onclick="getGreeting()">get greeting</button>

</body>

53

Example 4: Get A Reply
From PHP Script

• The PHP script "greeting.php":

<?php

$name = $_GET['name'];

if ($name == 'Hong')

echo "Hello Hong, how are you?";
else

echo "Who are you?";

?>

54

Example 4: Get A Reply
From PHP Script

55

Example 4: Get A Reply
From PHP Script

56

Response Formats
• With Ajax, the server response can be in one of

several formats.
• For unstructured data, we can use plain text,

including an HTML fragment.
• For structured data, we may use either XML or

JSON.
• Most applications use JSON these days as it is

simple and can be easily handled in JavaScript
and PHP without extra software (unlike XML).

57

Replacing HTML
• We sometimes need to replace a fragment of the

current HTML document with a piece of HTML
code returned from the server.

• To do this, we may enclose the replaceable
fragment within an element such as <div>
element, as shown in Example 2.

• The DOM object for most element contains the
innerHTML property.

• To replace the content of an HTML element with
a new content, just assign the new content (a
piece of text text) to innerHTML.

58

Replacing HTML
• Example:

• Assume the new list (in red) is returned from the
server and is in xhr.responseText:
var divDom = document.getElementById(“units”);
divDom.innerHTML = xhr.responseText.

Old list New list

<div id=“units”>
<p> List of Units </p>

MAS120
BUS230

</div>

<div id=“units”>
<p> List of IT Units </p>

ICT286
ICT365

</div>

59

Handling XML
• The response message can be coded in XML to

provide structured data.
• XML is an important technology for representing

structured data.
• XML is a meta language that is used to create

domain-specific markup language, such as
MathML, ebXML, and XHTML.

• You can extract information from an XML
message using either DOM binding parsing
methods as shown in Example 3 or using XSLT.

• XML and the associated technologies are covered
in ICT375 Advanced Web Programming.

60

JSON
• In HTTP, data exchanged between client and

server must be in text format. They cannot be
binary.

• However objects in JavaScript and PHP are binary
data.

• One way to exchange objects between the client
and server is to use JSON format.

• JSON stands for JavaScript Object Notation which
is part of the JavaScript standard.

• Data encoded in JSON are text. Therefore they can
be exchanged between HTTP client and server.

61

JSON
• JSON represents an objects as a text string,

using two structures
a) Collections of name/value pairs
{ name1:value1, name2:value2, … }

b) Arrays of values
[element1, element2, …]

• In a name:value pair, the value itself can be an
array or collection.

• Similarly, each array element itself can be
another array or collection.

• You can have any number of the above nested
structures in a JSON string.

62

JSON
• Example: the following notation represents the a

collection that consists of one property/value pair,
whose value is an array of three collections, each
with two property/value pairs:

{"employees" :

[
{"name" : "Dew, Dawn", "address" : "1222 Wet Lane"},

{"name" : "Do, Dick", "address" : "332 Doer Road"},

{"name" : "Deau, Donna", "address" : "222 Donne Street"}

]

}

63

JSON
• A JSON string is returned as a text string in
responseText. It needs to be converted into JavaScript
object in order for us to access its properties.

• The object could be obtained by running eval on the
response string, but this is dangerous, because the
response string could contain malicious code.

• It is safer to use JSON parser method JSON.parse() to
convert a JSON string to a JavaScript object:
var response = xhr.responseText;
var myObj = JSON.parse(response);

• You can access data via myObj, eg,
var address2 = myObj.employees[1].address;

The above address2 would contain “332 Doer Road”.

64

JSON
• Sometimes we have a JavaScript object that needs

to be sent to the server.
• An object must be converted to text format before it

can be sent to the server.
• This can be done with JSON.stringify method.
• Example:

var myObj = { name: "John",
age: 25, city: "Perth"};

var myJSON = JSON.stringify(myObj);

• We will provide more examples in Topic 10: Arrays,
Ajax, jQuery, JSON and Cookies: More Examples.

65

Ajax References
• W3C XMLHttpRequest - W3C Working Draft:

http://www.w3.org/TR/XMLHttpRequest/

• W3Schools Ajax Tutorial:
http://www.w3schools.com/ajax/default.asp

http://www.w3.org/TR/XMLHttpRequest/
http://www.w3schools.com/ajax/default.asp

